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Abstract

We consider the usual univeriate linear model E(y) =Xy , V(y) = 1 .

In Part One of this paper 1\ has full column rank. Numerically stable
and efficient computational procedures are developed for the least squares
estimation of Z and the error sum of squares. We employ an orthogonal
triangular decompositvion of X wusing Householder transformations. A lower
bound for the condition number of )f is immediately obtained from this
decomposition. Similar computational procedures are presented for the
usual F-test of the general linear hypothesis E'Z = 9 ; E')’ =m 1is
also considered for m # 9 . Updating techniques are given for adding to
or removing from (}f,z) a row, a set of rows or & column.

In Part Two, )f has less than full rank. Least squares estimates are
obtained using gene_ralized inverses. The function E"Z is estimable
whenever it admits an unbiased estimator linear in y - We show how to

computationally verify estimability of L'y and the equivalent testability

of L'y =0.
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PART ONE: URNIVARIATE LINEAR MODEL WITH FULL RANK

1. Least squares estim: ‘on and error sum of squares

We consider the univeriate general linear model

(1) By =X7 ; V) =0T,

~ o~

where E(+) denotes mathematical expectation and V(+¢) the variance-

covariar.ce matrix. We take the design matrix X to be nxq of rank

g <n and known; in part two we relax this assumption of full column

rank. The unknown vector 7 of q regression coefficients is estimated

by least squares from an observation y by minimizing the sum of squares
(1.2) (y - X' (y - X7)

Prime denotes transposition; bold-face capital letters denoste matrices
and bold lower-case letters vectors, with rows always appearing primed.
In the case where V(X) = 02.5 in (1.1), with A known and positive
definite, we may replace y by E‘X and 1{ by % where E‘ satisfies
FAFt = I + The matrix E‘ is not unigue but it is possible to find an g

o~~~

vwhich is lower triangular from the Cholesky decomposition of A (cf. e.g.,
Healy, 1968).
It is well known that the least squares estimate 7 satisfies the

normal equations

3) X%y =xy

and is unique when X has full rank. The matrix X'X is greatly




influenced by roundoff errors and is often ill-conditioned: by this

we mean that a relatively "small" change in X will induce a correspondingly
"large" change in ()('X)"l and in the solution 7 = (X'X) 'lX'y to (1.3).
For these reasons we prefer to work with X directly rather than X*'X

[cf. e.g., Longley (1967), Wampler (1969, 1970)].

It is possible to find an nxn orthogonal matrix P such that

(1.4) X = 13\ 5 P'X:(Ij) s
N "0

where R is upper triangular of order qxq . This orthe .nal triangular

decomposition (OTD) may be made in various ways; a very stable numerical

procedure (Golub, 1965) is to obtain P as the product of q Householder
transformations.

A square matrix of the form Ij =1 —21115' ; Wwhere E'u =1, is defined
to be a Householder transformation. Clearly }j = Ij' and
EIEI' = IE'}E = I:‘I;2 = E » So that E{ is a symmetric and orthogonal matrix.
A1l but one of the characteristic roots of EI are unity, the simple
root being -1 .

A vector x may be transformed by a Householder transformation to

a vector with each element zero except for the first, i.e.,
(1.5) }Pf = rSl B rto ,
say, where ej is an ... 7 vector with each component O except for

the j-th which is 1 (j = 1,2,...,n) . Premultiplyine (1.5) by its

transpvose yields

(1.6) x'x = x'H*




Substituting H = I-2uwu' in (1.5) gives

(1.7) x -2{(u'x)u = re;
premultiplication by u' yvields -ufx = T, where uy = i}." ,» the
first element in u . Substitution in (1.7) gives x+ 2ruu = re, ,
so that with x = {xi} ’

2 .
(1.8) 2u; = l-(xl/r) 3 2uy = -xi/(rul) »y 1=2,.0..,n .

The first expression will always be computed positive if the square root

of (1.6) is taken as
(1.9) = -sen(x)-(x0) Y2,

where sgn(xl) =+1 if x. >0 and -1 otherwise. Then

1
(1.10) 2u§ =1+ (|xl|/s) 3 2uy = sgx(xl) -xi/(sul) s 1 =2,000yn,

where

(1.11) s = +(§v§)1/2

This gives u'u = 1, for 2u;?_ = x?/(zseuje_) = xg/(s2+s|xll) sy 1=2,.04yn .

N2 2 2,2 2
Hence 2£ui = (s°-x7)/(s +s‘x1|) = l-(|xl|/s) = 2(1-u;) . We note
i=2

that H need not be computed explicitly as Hx = x -2(u'x)u , for which

~ore

we need only u and v'- . In the above form, it is necessary to compute

~

two square roots per Householder transformation; if, however, we write

H=1I-u(utu) "33t then only one square root need be calculated (Businger

~ ~ e ~

and Golub, 1965).
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Applying this procedure with x replaced by Xel » We obtain
(1.12)  HX = (rp5e0,%))

where r,, replaces r , and X; 1is nx (q-1) such that

= - ' 3 = .. - = . i
}..(,lfj = X541 2(1;1 },f.j+l)‘f sy 5 =140059-1 and X1 }ffj+l This
procedure is now repeated with lel

- - 1] -~ 3 ] - . < - A F
E.Il = E 251_1;11 , cay, with ujey 0 The last n-2 elements of §1§l
are now annihilated. So I}ﬂsl = r]JEfl = r]_'LSl , while EJ.}R{SE = Ifl?,(lfl
has its last n-2 ~omponents zero. The product H.H is orthogonal.

as x and a Householder transformation

Further repetitions, annihilating at the j-th stage the last n-j elements
in the j=-th column of the matrix .)E transformed previously by j-1
Householder transformations (j = 1,...,q) , realizes P as the product
of q Householder transformations. The matrix f is not computed
explicitly. Details of this algorithm are given by Golub (1965), and
Businger and Golub (1965) who also give a program in Algol 60.

Partitioning P = (El,fe) , with P, nxgq end P, nx (n-q) gives
from (1.4)

(1'15) 'X~’§ > é)f:'q >

L3 ] = [ 4 = 1 = 1 = o >
with PPy =1 , PiF, =0 end PR~ , since P'P =1 . If, in
the above algorithm, we simultaneously apply the q Householder transfor-

mations to the observation vector y , then we have

Py [ al
(lolh) P'y = = ’

-
Py \ Zo

N

say. Thus z, = Ply has expectation E(Ply) =

25 Pay 2.{1 = 9 and covariance




2 2
3 | _ ] —_
matrix V(Pyy) = o'BjP, = 0L,

. Hence 2z_, 1is an easily computed

~-q Pl
vector of uncorrelated regression residuals and may be used to test for

serial correlation (cf. e.g., Grossman and Styan, 1970). It follows that

(L15) g+ XN -1

as each term on the left-hand side is idempotent and their cross-product

is O ; their sum is idempotent with rank the sum of the ranks n-q and gq .

So PBy = I-X(K'R X' e zm, = y'BBY < (y-X)'(r-¥) s

the error sum of squares S, , say -- the minimum of (1.2). It is simply

camputed here as the sum of squares of the n-q elements in 2y = Eé}_’ .
The vector of (correlated) residuals T = Z-z(i is often essential

for analysis of the linear model (cf. e.g., Draper and Smith, 1966).

Though the matrix P may not be computed explicitly it can be retrieved

as the product of q Householder transformations when the corresponding

q u vectors have been stored (which we recommend). Hence we compute

T = Pyz, , since Pz, = PPLy = [I '}f()f'}f)-l’f']l’ =y-Xj =x . Hovever,

it has been observed by Gentleman (1970) that computing »r in this fashion

may be numerically unstable.

We also find from (1.4) that

R
(1.16) XX = (R',O)P'P(“ = R'R .
-~ =7 -~

~

Substitution in (1.3) yietus R'Ry = (R',0)P'y = R'z, , so that solving

(1.171) Ry =z

gives 7 . This is expedited by R being upper triangular.

s ot AR % btk . M
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We note that B'B is a Cholesky factorization of )E'§ s for which
Healy (1968) has given a Fortran program.

The estimator i has covariance matrix V(E) = 02(15'}5)"1 ; an
unbiased estimate is Se()f').f) -l/ (n-q) which is easily computed using
(1.i6) as (Eéfe)g—l(lz-l)'/(n-q) . The generalized variance (cf. e.g.,
Anderson, 1958) is |V(2)| = oeq/ [x'x| , where || denotes determinant.
In optimal design theory a problem is to choose X so that |}£')E[ is

maximized thus reducing |V(?)| as much as possible. Again using (1.16)

q
we see that |X'X| = [R'R| = T] rii » as R 1is upper triangular. Hence
~ =~ ~ TN ph

|V(';)| is estimated by [zég,)/ (n-q) ]q/ﬁ =, .
-~ ~ [ i=1 11

A measure of the ill-conditioning of a matrix is its condition number

which we define as the ratio of the largest and smallest nonzero singular
values of the matrix. The singular values of a (possibly rectangular)
matrix é are the positive square roots of the characteristic roots of
é'ﬂ. or éé' + When the condition number far exceeds the rank we find
(ef. Wilkinson, 1967) that the matrix is extremely ill-ccnditioned.

A lower bound for the condition number n()f) of the design matrix X
is the ratio of the largest and smallest (in absolute value) diagonal
elements of 1} . To see this we note first that )5 and f')f have the
same singular values, 2ue to the orthogonality of f . As _13')5 is merely
R bordered by zeroes, sg(}f) = sg(l}) » where sg(+) denotes singular

value. For any square matrix A of order nxn,
(1.18)  sg (&) < feny(A)| < sgy(A) 5 5 =1..0m

with ch(+) denoting characteristic root. The subscript Jj indicates




j-th largest. To prove (1.18) when A has real roots, let A\ = chJ.(A)

with Av = Av . Then

~ e mere e e ~ e re o~

(1.19) sgi(A) = chl(A'A) = max[x'ATAx/x'x] > VIA'AV/viv =
~ ~ ~ N ~

~

= AAtY/vty = G

~ e e e ey

Similarly sg-(A) <A° . Thus

sg, (X) sg, (R) max|ch(R) | mexl|r,, | '
(1.20) n(X) =squ) - sgq@7 2 min [eh(R) | N minfr.. T °

Other properties of x(A) are given by Wilkinson (1967).

Why is the condition number important and how can we use the
relationship (1.20)%? Let z be the computed approximation to z which
satisfies (1.3). Suppose that we wish to determine an upper bound for

the norm of the relative error or 7 :

2y 15 -5

where || a || indicates the Euclidean norm (g'g)l/ 2 . Define
(1.22) r=y-X7 ,

which we can compute quite accurately. Then

(1.23)  r-r = X(G-7

and hence

(1.24)  X'X(7-7) = X'F ,




since X'r =0 . Thus

~

(1:25)  (|7-71 = & TXE ] < e (@0 E] = /el - |
From (1.3), |X*X7|| = [X'y|| , so that

(126) eyl < 113 llsefe

Combining (1.25) and {1.26), we have

A

(2 5-7U/150 < lsey(0) /sg (01X ]/ lIxy ]

KT / ey

Thus we see that the condition number may be used for determining an
upper bound for the relative error of “z | « This upper bound is the
product of two factors; the first of which, n2(§) » is independent of y -
However, the lower bound provided by {1.20) would in some circumstances

give insight into the relative error. Hence, if
. 2 ~
(1.28)  [max|r., |/minfr 37X 2|/ Xy

is large, then it is likely that the relative error in Hz | is large.

The numerical efficiency of the above orthogonal triangular
decomposition is enhanced (cf. Golub, 1965) if the column selected for
each of the q Houscholder transformations maximizes the corresponding
sum of squares. That is, at the j-th stage (j = 1,...,q) we transform
that column of the q-j+1 possibilities which maximizes the sum of
squares of its last n-j+1 components. The interchanges may be

summarized in a permutation matrix T postmultiplying X . Thus (1.k)

becomes




13-
L~ ]

(1.29) X=P T ;3 PYXT = .

~ e 0
~

10

The vector 2z does not change and hence neither does Se « The solution
(1.17) changes however; substituting (1.29) into (1.3) now gives

MR'RT'Y = TR'z, , so that

o~ o~ ~aw

(1.30) 13(17'2) =z =R ,

is solved for 9 , and ; =m0 . As these interchanges only rearrange
a 2
the rii we still find |X'X| = | |rii . The lower bound for the condition
-~ ~ 1

number simplifies, however, as with these interchanges max]riil = |rll| ,
and minlriil = quql so that »(X) > |rll/rqql .

Given the nxn matrix

l ) 'l 5] -l b} s 9 -l
O ) l ] “l 5] se0 9 -l
(1331) .é, = : E . . )
0 I} 0 ] 0] 3 cee 1
we see that maxlrii| = min|rii| =1, and so u(A) >1, since A =R

when no column interchanges are made. However, if column interchanges

are performed then for rn = 10 say, lrll‘ 2 3,162, ‘rnn‘ < ,003383

and x(A) > 934.8. The nctual value of »(A) = 1918.5 .

The Fortran IV programs LILSQ and DLLSQ (double-precision) in the
Scientific Subroutine Package (SSP) of IBM (1968) solve the least squares

problem as described above. The SSP library is available at many IBM 360

computing centers. The SSP manual gives a write-up of the procedure and




indicates how Z and Se are output. In addition we note that the gq
diagonal elements of R are output as AUX(q+l,...,2q) ' , with
maxlrii‘ = AUX(g+l) and minirii\ = AUX(2q) in absolute value. The
remaining nonzero elements of 5 are overwritten in corresponding

positions of X (input as ' A '). The vector z is overwrittenon y

(input as * B ') and S, appears in ! AUX(1l) *. The solution z is
output as ' X '.

The number of multiplications to obtain R is about nq2 -q5 /3
whereas approximately nq2/ 2 multiplications are required to form the
normel equations (1.3) with about q3 /6 multiplications needed to solve
them. Thus when n-q 1is small, the number of operations is roughr’y the
same for both algorithms, but when n-q is large, it requires about twice
as many operations to use the orthogonalization procedure.

The orthogonal triangular decomposition (1.4) or (1.29) is very
similar to the Gram-Schmidt decomposition. Indeed if n = q and there
is no roundoff error and all Ty are taken positive, then the Householder
and Gram-Schmidt algorithms yield precisely the same transformation.
Although the modified Gram-Schmidt process (cf. e.g., Golub, 1969) may be
used for solving linear least squares problems, the computed vectors may
not be truly orthogonal! The Householder transformations, however, yield
vectors which are more nearly orthogonal (Wilkinson, 1965). Furthermore,
not only do the first ¢ crolumns of E’ span the same space as the
columns of § s but the last n-q columns of E span the complement of
the space spanned by the columns of )f . As we have seen above, this is

quite useful.

10




2. Hypothesis testing und estimation under constraints

Let us consider the general linear hypothesis

(2.1) L'y =0

for the linear model of Section 1. The contrast matrix L' is taken as

sxq of full row rank 8 <q . If we assume that y is normally
distributed then L'y is N(L'-/,azL'(x'x)‘JI.) , With ¥ = (x'x)']x'y .

The numerator of the usual F-test for (2.1) is then well known to be

(22)  FELEHTLI T

1~
i
wm
-

say, the "hypothesis sum of squares". Substituting (1.16) and (1.17)

into (2.2) gives

(2.3) S, = zi(R'l) 'L [L'R'l(R'l) vt R'lzl .

We compute (R-l)'L =G, say, by solving R'G =L , with R' lower
triangular. We then obtain an orthogonal triangular decomposition of G ,

axs {(q>s),

[ Jle)

(2.8)  6=@Hm=q ,

R ¢
say, where P is upper triangular sxs and the orthogonal matrix 9,
is the product of s Householder transformations. Then 9'9 = f'?, ;
partitioning Q = (31,32) » wvhere Q, is gqxs and Q, ax (q-s) gives
G =QB from (2.4). Substitution in (2.3) yields

(2.5) S, =219%1%




which we campute by applying the s Householder transformations of (2.h4)

to z, simultaneously with G and then summing the squares of the

first s components of the transformed Zy
If we test the hypothesis
(2.6) L'y =m ,

where m is a given sx1 vector, not necessarily O , then we proceed

by computing E'i "= E » Say, and sum the squares of the components of
(g'l)"}_x ; we £ind the latter by solving E'z -m =h = B't , say, for ¢,
with g' lower triangular.
The described procedure can be improved upon when s > q-s . We
first ovtain an orthogonal triangular decomposition of E. ’
Y

(2'7) L=T >
- ™10

say, where T is orthogonal and U upper triangular. Partitioning

T = (Tl’T2) > where T, is qxs and T, is ax (q-s) 1leads to
L -_  § . ] —_
@8  m v -0 .

Thus L'y =0 if and only if 7 = ng for some 6 , now unconstrained.

~ o~ ~

Hence

(2.9) min (y-X7)'(y-X7) = min(y-XT.9)*(y-XT0) .
L'y=0 ~ ™ ~ =~ g =~ ~a~l L am2e

~

Using (1.4) and (1.14), we see that (2.9) reduces to

(2.10) m;n(fl-S?.aE>'(fl'§Eze) * 23

-~




T T YR TETAn i ~ o o B B
e e = 5 ¥ «

so that §, equals the first term in (2.10) which is easily computed

as in Section 1 with 2, replacing y and R1‘2 replacing X . Since

(cf. e.g., Good (1965), p. 89),

(2.11) g, (xT)

v

sg, (XT,)

(2.12) =g (XT) < sgy_o\4(XT) < se  (XT,)
we have
(2.13)  x(XT,) < x(XT) = w(X)

Thus, by e€liminating the constraints, the linear least squares problem
may become better conditioned.
*
The least squares estimate ¥ , say, of ¥y subject to L'y =0 is

obtained from the solution & to (2.10) by

E 3 7S
(2.ak) 7 =1 H .

~

If the constraints have nonnull righthand side m as in (2.9) then
the procedure is changed as follows. Evidently L'y = m holds if and

only it 7y =T 9+T1(U-l) 'm =T O+Tw , say. We obtain w by solving

2
m =U'w , with U' lower triangular. Thus y is replaced by ¥y -XT.w

~RT,w the resulting value of S

1 2 n is therefore

and hence 2z, by =z

1

(2.15) mén(fl -RT,w -..7_8)%(

~

RT.W -RTEO)

z -
~l ~ ot b g

which we compute as in Section 1 with 2z, -RI'.w replacing y and RT

1 1. 2

replacing X .

a3 o A APRApT= e e i <o el
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The relevant F-test for the hypotheses (2.1) or (2.6) is then

computed as
Sh/s

(2.16) F = g e
with the critical region formed by values of (2.16) exceeding the corres-
ponding tabulated value of F with s and n-q degrees of freedom.

In some special, though common, situations the above cumputations
simplify considerably.

If we test a single contrast in A equal to O we obtain (2.1)

with s =1 . Let us write this as

(2.17) 1ty =0 .

A particular case might be testing a single regression coefficient equal
to O . Then (R-l)'L = X Dbecomes (R'l)'l = k , say, found by solving

f = R'k as before. Then (2.3) becomes

(2.18)  (£1*9)°/x'k = S, »

and we compute the denominator in (2.18) by summing squares of components

in k . The one-sided t-test for

(2.19) 1y >0

he s . iy 0l ' 1/2
s critical region large positive values of 2'7/ [k'k Se/(n-q)] .

Ancther special case occurs with s = g-1 when L'y =0 if and
only if

(2'20) 7 = gt )

1k




where © is now a scalar. The vector t 1is often found upon inspection
(without transforming L ). For example in testing for howogeneity of
coefficients of 7 , we have t = e , the vector with each component

unity. Substituting t for T2 in (2.10) yields

(2.21) 6 = z!Rt/t'R'Rt ,

~ e

and

2
(2:22) 8y, = 2z - (@) /vRE

~ e

with the deruminators computed by summing squares of elements of Rt .

e~

15




3. Updating procedures :

After a particular set cf data has been analyzed it is often
pertinent to add to or remove from X and y a row (or set of rows

or to add to or remove from X a column. This happens when new informa-

tion becames available or when existing experimental units have been
classified as extreme, or independent variables insignificant.

We begin by corsidering the addition of data from m , say, further
experimental units. Let }.Em and Y be the corresponding data of order
mxq and mx1l wvespectively. Following (l.4) and (1.14) we may write

Im

2 Im

(3.1)

1]

s %N
[ 28] EN

1O
1y
-»
1
10
1N
[1v)

Applying q Householder transformations of order mtq +to the first mtq

rows of (3.1) yields

*
X Im B %
(3.2) = gl * )
Rz 0 7
. . * . *
say, where Rl is q9xgq upper triangular, Zy is Qaxl and z, 1is

mxl . Hence

R ¥*
X 1 %

Y,
[...m ~T *

4 —

(3.3) P2 =1 9

X Yy
90 z

where
16




PO I 0
t
. By = J
o I o P

is an orthogonal matrix formed from 2q Householder transformations, and

has order mtn . The new residual sum of squares is z’{' z;"_ + zézz s ]
i.e., the previcus sum of squares, zéz2 » augmented by the sum of squares J

*
of the m components of 2y 3

additional uncorrelated residuals.

these components themselves give m

Next, suppose we wish to add a (g+l)-tb variable whose n values
constitute a vector X . We first compute B'f by applying in turn the
q Householder transformations determined by the stored vectors u
(cf. residual calculations in Section 1). We need then only one further
Householder transformation, E , say, of order n-q to annihilate the

last n-g-1 elements in P'x , i.e.,

4 |
I, O R Px R Px
(3.5) P'(X,x) = = s
]
°© H 0 HPxx 0 he

where P = (Pl’P2) , a5 in §1, and h = x'PePéx , the sum of squares of

the last n-q components of P'x .
The procedure for removing an experimental unit is more complicated.
The method given previoucly by Golub and Saunders (1970), may under

certain circumstances prove unstable. We now give a new method which

should provide a more accurate solution.




Suppose we want to remove x__.'L 5 the i-th row of X . We seek an
upper triangular matrix S , say, so that

R - t = SIS =
(3.6) XY -xxi =RR-x,x} =8'S =RI(I-tL)R ,

~ ~r~

say, where R't = X3 the vector t is easily computed since R! is
lower triangular. We now construct an orthogonal matrix Q, so that

qt = ce thus c° = £t = x!(R'R)'lx = 'x(x'x) lX'e <1l . We @efine

€ 3 - iMoot A i‘e o
the quasi-diagonal matrices of order qxq :

-
I ]
(5’7) %k = gk H k = l,o-o,q-l ’
Eq-k-lj
where
cos Qk » sin Gk
(3’8) = 5 k = l’oco’q-l .

-8in Gk, cos Ok

Clearly Zk and Gk are orthogonal. Let

(3.9) (5 :'&) = c t( Y l’ -l) 3 ! =1lyeee5a-1 ,
with t and R, =. + We choose 6, so that Z annihilates
~0 - i 0 I k ~q-2
1 . = -
Sq-l+1..!-l and hence eq 2+ZL..2 =03 2 =1,¢4e5q-1 . Then the matrix

(3.1-0) Q L% ...Z 1

satisfies Qt = and is orthogonal. From (3.6) we may write

ce
~1
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2
(-1)  §'5 =RQI-cge))eR

which is positive definite if and only if c2 >1 . It follows that

- -

Wel ) w22 ) oo w2,q-l F) w2q

(3.12) 9'8 = H = 0 ’ w32 3 oo w3’q_l ’ wf_q

w w
q,9-1’ "qq _

is an upper Hessenberg matrix. Thus (%.11) becomes S!S = WDW s with

~ o~ re

(1_02)1/2 o

9 Sq-l

which is real when c2 <1l . We compute S by applying orthogonal

transformations to the upper Hessenberg matrix DW . Let

~oo

(3.1%)

W

S =%k Sy 3 K= Lieessarl

* * .
with §O=g~w and Z'k. formed as %k in (3.7) but with Sy replacing

~ . - af
9] and so chosen that gk annihilates Slci-l g] S] s] IPYSI and thus
L4 -—
E] l§lfl =0 . Then

* * %
(5.15) 5= §q-l = Eq-l Eq-a eee %2 EIBH °

This procedure requires about 9q2/2 multiplications and 2q-1 square

roots.




The above algorithm can also be used for adding an observation but 1
about twice as many numerical operations are required as in the procedure
given by (3.3) and (3.4). We also note that the problem of deleting an

observation is numerically delicate. Since

(3.16) §'S =RY(I-tt")R ,
it follows that
(1) w8 Sx® / @-tn)E

Thus if E'E is cloée to 1, then u.(§) could be quite large as the
right-hand side of (3.17) is attainable.

Finally suppose we wish to remove an independent variable or
column of ),f « If it is the last then no further calculations are

required; but suppose it is the first. Let

2 2 =
(3:38) R - R NS )

r
qq
where R is gx(g-1) and has one more row than an upper Hessenberg

matrix. We annihilate the elements just below the main diagonal of R,

i.e., Thos esey

4 by 2pplying orthogonal transformations of the type

(3.7) with

(3.19) R =2, R, 3 K = 1ye0e5q-1 ,

20




- T . s t =
and 1}0 = B 5 Wwe choose Qk in %k so that Sl:+l~Rk-l e = rk+l,k+l
. - . ' _ .
is annihilated; thus Sk+l§k Sk =0 and Bq-l is the new triangular

matrix sought.




PART TWC: UNIVARIATE LINEAR MODEL WITH LESS

THAN FULL RANK

L4, Least squares estimation and error sum of squares

We consider now the univariate general linear medel (1.1),

(k1) B =%, v(y) =0T ,

with the design matrix < of rank r <q <n . We obtain the same normal

equations as (1.3),
(4.2) XXy = X'y

which are consistent; thelr solution, hcwever, may not be unique. Consider

a solution to (%.2) which we may write
(k.3) 7 = (X™)X'y

where (.)  denotes generalized inverse. We follow Pringle and Rayner (1971)

\

and define a generslized inverse of a matrix A, mxn , as any matrix A

satisfying
(L.k) EA"A = A
Evidently A~ has order nyxmx . Such a generalized inverse exists but is

not uniaque in general; i.., »owever, A  satisfies (4.4) and

~

(k.5) ATAAT = A

(4.5) (Y - T 1

(%.7) (ATA)' = ATA




- + )
then we write A = A , the pseudo-inverse of A . When we only require

~

that (h.h) is satisfied we will write A” = g(A) -- a g)-inverse of A .

Similarly when (4.4) and (4.5) are satisfied, A~ = glE(A) 3 (o), (k.5),
- - 3 + —

and (4.6): .5 = glEB(é) - The pseudo-inverse A = gl?'jh(‘f,‘) . The

solution ;O , say, to (:.2) which minimizes ;';‘ equals X+y as is

shown, for example, by Peters and Wilkinson (1970). Our concern, however,

focuses ..ore on estimable functions of 7 , rather than 7 per se so we

will not discuss here computation of ;O . We define an estimable function

of 7 as a vector L'y which admits an unbiased estimator of the form

~ o~

K'y , where L' is sxqg , say, and K', sxn . The least squares

~

estimate is then L'y = L'(X'X) X'y so that K' = L*(X'X)"X' . We shall

see (Section 5) +hat when E'Z is estimable, ‘I:'()'_("E) -)f' is unique for
all ()E')‘E)- = gl()f’)f) » Rather than form X'X , find a gl(}f')f) and then
postmultiply it by X' , we compute a g123()£) directly, noting that G
is a gl(é) if and only if it can be written as (é'.ﬁ) -_I~\' for some
gl(é'f.) = (é'.ﬁ‘)- [Pringle and Rayner (1971), p. 26].

We proceed as in Section 1 to orthogonally transform )E by Householder

transformations with column interchanges. If X has rank r then after r

Householder transformations we obtain, cf. (1.29),

R S R S
4.8y  x=p|~ ~Jw 5 pxw=[~ - ,
~ “\0 0}~ - 00

where R is upper triangular, rxr , S is rx(q-r) , and 7 is a
permutation matrix of order qxq . We now claim that

R-l

1O

*
(h9) X = P = gy n(0) -

0

~

| e
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* 0 % R 8
We have XX =P| ~ 7~ |P', clearly symmetric. Hence XX X =P| ~ ~ TN =
- {0 o]~ - “{o o0}~
-1
* % R 0 »*
while X XX =1~ ~|p* = X so that (4.9) is proved. The solution
~ — -\ o ol~ ~
~ *
7y =Xy to (4.2) afforded by (4.9) is often called a basic solution as it

contains at most q-r nonzero elements.

Thus (4.9) accowodates our purposes; moreover we do not have a
stronger g-inverse than is needed. As in Section 1 we partition
P = (51,52) » but now let P, be nxr and P, nx (n-r) . From (4.8)

it follows, cf. (1.13), that

(1:20)  BXT = (&5)

(k.11) pLXx =0 .

Following (1.14) we now write

Py Z1
(’4.12) E'}-’ = = = VA ’
Py 22

where 2z, isnow rx1l and z (n-r) x1 . Thus =z is again a vector

~1 2 ~2

of uncorrelated residuals; moreover

(4.13) P, P} +x(x*x)’§' =1

~ e

as in (1.15), with P,P{ idempotent rank n-r and X(X'X) X' symmetric

idempotent rank r . By (4.11) their cross-product is O and so their

sum is idempotent rank (n-r)+r = n and hence I as claimed. Thus

~e

2k

>

T e A n e et




(&.1%) zhz, = y'(I-X(X'X) -X')Z

is the residual sum of squares, computed as the sum of squares of tu.

n-r camponents in Z, *

The vector of (correlated) residuals r = y-Xy = (I-X(X'X)X")y = P Ply

as in Section 1, and using (4.13) it follows that (4.14) equals r'r .




5. Estimating estimable functions and testing testable hypotheses

As mentioned in Section 4 we are not directly concerned with the
estimation per se of y . We define L'y to be an estimable function
of 7y whenever it admits an unbiased estimator which is linear in y ,

Kty , say. Thus
(5.1) L'y = E(K'Y) = K'Xvy
holds for all 7y . Hence

(5.2) L' =

L]

X .

As in Section > we take L' to be sxq , but now relax the assumption of

full row rank taking r(L) =t <r . We obtain

L'
(5.3) rf~ | =X
X ~

directly from (5.2). Substituting (4.8) into (5.3) gives

L L+ L3
(5.4) r - = r = r(R) = rX) = r ,
R,S R, S ~ ~
el ~ - o
~1{ 0,0

-

where we partition
(5.5) L'm = (Li’Lé) )

with Li sxr , and Lé sx (q-r) . The matrix L' is the contrast

matrix L' with its columns permuted according to the interchanges which
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rearrange the columns of X to make the first r columns linearly

independent. Then Li are the corresponding r columns of L* or L'T .

~ o~

We apply v >r Householder transformations of order s+r , whose

product is V' , say, so that

4 [ ]
Lirls T U
{5.6) A o= - ’
~\ R, s |~ 0 0

where Tf1 is a permutation matrix, and T is upper triangular vxv .

If (5.6) is achieved at tl.e r-th stage, i.e., v =r , then L'y is

~ o~

estimable. If not, then L'y is not estimable.

~ o~

An alternative procedure which is often easy to verify theoretically

follows and is included for completeness.

THEOREM 5.1. The function L'y 1is estimable if and only if

~ o~

(5.7) L'(X'X) X'X = L!
for any (X'X)~ = g (X'X) .

Proof. We show that (5.2) and (5.7) are equivalent. Clearly (5.7)

implies (5.2); conversely

(5.8) LU(X'X) XX = K*X(X'X) XX =K'X = L' ,

~ - o~ e

since X(X'X) X!

~ o~

[ Bt
I
]

[cf. Pringle and Rayner (1971), p. 26].
Q.E.D.
We may use (5.7) to computationally verify estimability as follows.

Substituting (4.8) and (4.9) into (5.7), with X = (X'X) "X* gives
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-
]
1ed”

(5.9) L' m o= L

t
3
1O
1O
l
l

Substituting (5.5) into (5.9) yields

(5.10) LiR-lS = L!
To verify (5.1C), therefore, we solve RW =S for W , say, which equals
R_ls , with R upper triangular. We then examine L'W-Lé and if close
enough to O conclude L'y estimable.

For the remainder of this section we will assume L'y estimable.

From (k4.3),
~ - *
(5.11) L'y = L'(X*X) X'y = L'X ,

~

where X = (X*X) Xt = g125(x_\ , ¢f. (4.9). Thus

R 0
(5.12) uy=1m|~ ~lpy=118tz ,
-~ ~ 0 o |~ = 1. 1

using (4.12) and (5.5). We compute L";' » therefore, by solving RW =z,

for w , say, which equals R-lzl , with R upper triangular. We then

premultiply by L]'_ which contains the r columns of L' corresponding

+o0 the r 1linearly independer* colums of X . which yielded R . We note
t

g8, (X'X) .

KX(X*X) X' =

~ e w A ae

that L'y is uniquely determined by (5.11) for any (X'X)~

To see this, set L' = K'X from (5.2), so that L'(X'X) X!
kX' x) X' = Lr(x'x)"x* , since X(X'X)X' is unique [cf. Pringle and

Rayner (1971), p. 25].
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We define the general linear hypothesis

(5.17%) L'y =0

as testable whenever L'y is estimable. The numerator of the usuai F-test

~

for testable (5.13) is then, cf. (2.2),
(5.14)  F'LIL'(X'X)L]'L'y = S,

To see that (5.1%4) is invariant over choices of (X'X) , notice that
LY(X'K) L = K'X(X'X) X'K = KX(X'X) XK = L1 (X'X)"L from (5.2). Moreover,
(5.14) is also invariant over choices of [L'(X'X) L] ; writing

* -
X = (X'X) X' we find that (5.14) may be written

~

(5.15) Z'(X*)'L[L'}f*(x*)'L]-L'X*y =S,

using (5.7) and (5.11). S, is uniquely defined since for any A,

A(A'A) A' is unique [cf. Pringle and Rayner (1971), p. 25].

~ e o

To compute S. we see from (4.9) and (5.11) that (5.15) may be written

h

1

(5.16) 8, = 2@ L RIERD LI LRz

We obtain an orthogonal triangular decomposition of

1t
1t

— ]
L =9 T2 »

10O

|

say, where B is upper triangular txt , with t = r(L) = r(Ll) by (5.10).
The orthogonal matrix Q is the product of t Householder transformetions,

while the permutation matrix T p Tearranges the columns of Ll y TXS8 ,
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to make the first t 1linearly independent. Substituting (5.17) into

(5.16) yieids
(5.18) S =z

*
where G = g125(9) is given by

. B 0
(5.19) G =T,|~ ~lqr .
<3 O/N

We partition Q = (Ql’Qe) » where Q, is rxt and Q, rx (r-t) .

{fif t =1r, Q, =Q .] Then (5.18) reduces to
(5:20) Sy =247

as at (2.5). We compute (5.20) by applying the + Householder transfor-

mations of Q in (5.17) to =z, simultaneously with G and then summing

1

the squares of the first t components of the transformed =z

If we test the hypothesis

(5.21) L'y = m

and L' is sxq with row rank t <s then m must satisfy the same
s-t restrictions that apply to the rows of L' , i.e., (5.21) must be

consistent. Then the numerator cum of squares is uniquely given by
(5.22) ('L -m") L' (X'X) L] (L*7 -m) = 8,
following (5.15) and (5.16) we see that

(5.23)  L'(X'0)L = LIRN(R)'L, =6'G




for which we want & gl-inverse. We use
*
LEMMA 5.1. If A = 8125(A) , then

(5.24) AR =g (a)

Proof. From (4.4), (k.5) and (4.6) we have

* * *
(5.29) AA A=A , AAA =A , AL =(a)'A

o~ ~

~ a e~

* ¥ * %*, ¥ R *
Hence A (A )'A'A =A AAA=AA . Thus A'A[A (A )'A'A] = A'AA A =A'A
*

Q.E.D.

From Lemma 5.) we obtain
(5.26) G (G = [Lr(x'x)7L]"
= “lg-1y.
= T8 (B )My

from (5.19), where we partition Tle = (1121,1;[22) s with TI21 ; sxt,

identifying t linearly independent columns of Ll s rxs . Hence

..1)

(5.21) Sy = ('L () M (-

First L'y -m is computed and rearranged to form Trél(L'§ -m) = h, say.

~ e~

Then h = B'k is solved for - ., where B' is lower triangular. Finally

~ ~ -~ ~

S. is found as the sum of squares of the components in

h
k= (3m = @)y - .

The relevant F-test for the hypotheses (5.13) or (5.21) is then

computed as

31
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S./t
(5.28) F = y/ ,

Se n-r
cf. (2.13), with the critical region formed by values of (5.28) exceeding
the corresponding tabulated value of F with t and n-r degrees of
freedam.
The above procedures simplify slightly when the contrast matrix E' s
sxq , has full rank s <r = r()f) . In that case (5.23) becomes non-

singular and the results of Lemma 5.1 arec not needed. We use

LEMMA 5.2. When L'y is estimable,

]

(5-29) r{L'(X'X) L] = 2(1) ,

where r(-) denotes rank.

Proof. Using (5.7), (L) = r[L*(X'X) X'X] < r[L*(X'X) X'] =
r[Lt (X)) XX {(X*X) "}'L] = r[L*(X*X) L] < *(T) -
Q.E.D.
When I:' , Sxq , has full row rank s <r the decomposition (5.17)

becaomes

1

(5.30) G =9 ~ T
°
say, where T, isnow sxs and may equal I (no column interchanges).
Formula (5.27) applies with essentially no change.
We defer discussion of updating techniques for the less than full rank
case and extensions to multivariate models to a further paper. A computer
program in Fortran IV for the IBM 360 is being developed for the procedures

discussed in this paper.
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